The evolution of enzyme kinetic power.
نویسندگان
چکیده
Evolution of the kinetic potential of enzyme reactions is discussed. Quantitative assessment of the evolution of enzyme action has usually focused on optimization of the parametric ratio kcat./Km, which is the apparent second-order rate constant for the reaction of free substrate with free enzyme to give product. We propose that the general form kcat.[E]T/Km (where [E]T is total enzyme concentration), which is designated the 'kinetic power', is the real measure of kinetic/catalytic potential in situ. The standard paradigm of 'perfection' dictates the evolutionary maximum of 'kinetic power' to be k+s[E]T/2, where k+s is the diffusion-controlled rate constant for formation of the ES complex (and, hence, for the overall enzyme reaction). We discuss the role of protein conformational mobility in determining this state of 'perfection', via gating of substrate binding and determination of the catalytic configuration. Going beyond the level of the individual enzyme, we indicate the manner by which the organizational features of enzyme action in vivo may enhance the 'kinetic power'. Through evolutionary 'perfection' of the microenvironment, one finds that the 'kinetic power' of enzymes can be affected by alteration of [E]T as well as the unitary rate constants. At this level of complexity, we begin to realize that the 'kinetic' description of cell metabolism must be supplemented with thermodynamic concepts.
منابع مشابه
Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk
In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...
متن کاملThe Kinetics of Enzyme Mixtures
Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based...
متن کاملمقایسۀ اثرات مهارکنندگی دو داروی فیزوستیگمین و پروکائین بر روی فعالیت آنزیم استیل کولین استراز
Background and Objective: The acetylcholinesterase (AChE) is an enzyme that takes responsibility for substrate hydrolysis of acetylcholine, and it is seen structurally, as monomer, dimer and tetramer units. The objective of this study was to examine and compare the inhibitory effect of the two drugs, physostigmine and p hydrochloride in vitro. Materials and Methods: In this study, the in...
متن کاملThe immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کاملKinetic Investigation of Myeloperoxidase upon Interaction with Copper, Cadmium, and Lead Ions
Background: Myeloperoxidase (MPO), which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 223 2 شماره
صفحات -
تاریخ انتشار 1984